
Text-based Event Detection: Deciphering Date
Information Using Graph Embeddings

Hilal Genc1 and Burcu Yilmaz2

1 Department of Computer Engineering
2 Institute of Information Technologies

Gebze Technical University
{hgenc,byilmaz}@gtu.edu.tr

Abstract. Event detection is increasingly gaining attention within the
fields of natural language processing and social network analysis. Graph
models have always been integral to social media analysis literature. Ow-
ing to the long processing time and time complexities of graph-based al-
gorithms, these models were initially very difficult to improve upon. Over
the past few years, researchers proposed many approaches to create rep-
resentations such as word2vec and doc2vec [11]. With the emergence of
graph embedding techniques in recent years using deep learning tech-
niques such as node2vec, it is possible to extract node embeddings that
can be used to embed graph information into machine learning meth-
ods. We introduce SnakeGraph, a new model which uses the sequences
of words making up each body of text along with key representations
such as the user and the date. These representations can help us learn
about the main ideas communicated via written language. However, our
method not only looks at both the content of text and how it links to
other key information, but also factors the relationship between words
in our text as they appear in sequence and overlap as they appear across
different bodies of text. We believe that date and user embeddings can
especially shed light on event detection literature.

Keywords: Graph embeddings, extracting time embeddings, event de-
tection, transfer learning.

1 Introduction

Time is a significant aspect in social network analysis. This is because it can
not only help document individuals and their changing preferences and points of
view but also the progress of events to a much larger scale. Information diffusion
refers to the progress of events over time and it may manifest itself in different
patterns. Attention given to an event may emerge in the beginning, peak and
then fade away or it may continue to oscillate indefinitely. Time also has different
levels of granularity ranging from seconds to months to years. Proposed models
for information diffusion often consider time in units of days.

Recent years have seen an emergence in studies devoted to deep learning and
language models that extract dense feature vectors called embeddings or repre-
sentations. Graph representation learning has proven to be extremely useful for
graph-based analysis and prediction. There has also been a rise in approaches
that automatically encode graph structure (graph, subgraph, or node embed-
dings) into low and fixed dimensional embeddings.

In this study we represent social media data using a graph. The proposed
graph embeds text information and key entities, such as date and user informa-
tion corresponding to the tweets, and the relationships between them. Also we
transferred a text-based news corpus and hierarchy of the entities to the train-
ing phase of the graph embedding extraction to extract the embeddings more
accurately. The model that we used to extract vector representations from our
graph is Node2Vec. The contributions of the paper are as follows:

2 Hilal Genc and Burcu Yilmaz

1. Gaining key information: We can use the proposed model to extract date
embeddings. To our knowledge, no graph embedding model currently exists
for date embedding extraction. Although we test our method only for dates,
the proposed model can be used for any other named entity.

2. Understanding varying concepts: The proposed method can extract
varying levels of granularity for entities such as date, month, and year em-
beddings if we clearly define the hierarchy of these concepts. Extracting these
date embeddings is the novel part of our study. It is also possible to extract
village, city, and country embeddings.

3. Graphs & Node2Vec: The proposed model sheds light as to how graph
data and the Node2Vec model can be used to model these concepts and
extract embeddings.

4. Enrichment of graph embeddings: The time complexity is very high for
graph mining algorithms. Thus we proposed to transfer non-graph data with
the intention of making the model learn the embeddings more accurately. To
our knowledge, transferring data to the graph domain from another domain
to extract graph embeddings has never been done before. We believe this
will pave the way for more advanced transfer learning methods to extract
vector representations from graphs.

5. Although we did not propose a method specifically for event detection, we
extracted related key concepts. We believe that these embeddings will shed
light on event detection literature.

1.1 Literature Analysis

Event detection is identifying an event trigger (usually a single verb or noun
[4]) from a body of text to determine what event(s) might be associated with it.
An early study in event detection [8] clusters tweets through similarity measures
and selects the most widely shared tweet to represent all other similar tweets.
Each event trigger is introduced in [14] as a triple structure (args, verb, argo)
containing a verb phrase and two noun phrases representing the subject and
object with respect to the action. The model filters the frame elements for noise
via a probabilistic model.

The results from [9] show that convolutional neural networks alone can be
very helpful for sentence classification. An LSTM model in [10] uses mean pool-
ing to combine user embeddings, community embeddings, and word embeddings
to determine whether a given post will initiate a conflict. [3] uses a bidirectional
gated recurrent unit to generate the most likely hashtag that will appear in a
given tweet while [15] detects the sentiment and similarity of tweets using a
CNN-LSTM model. The model proposed by [1] looks at subword information on
words belonging to morphologically rich languages such as Turkish and Finnish.
[16] mentions the graph neural network (GNN) as a framework that computes
embeddings of a node by recursively aggregating and transforming the embed-
dings of each node’s neighbors. These neighbors have no natural ordering unlike
the elements within a lattice used for image processing [7].

Retrieving node embeddings from our proposed SnakeGraph to find correla-
tions between written text and publication date is the focus of our study. We
accomplish this with the help of an effective model that extracts embeddings
for the nodes in our graph. Major kinds of embeddings identified in [2] are node
embeddings, edge embeddings, subgraph embeddings, and graph embeddings.
Node2Vec [6], Subgraph2Vec [12], DeepWalk [13], and Author2Vec [5] have suc-
cessfully proposed models for extracting these node embeddings from already
existing graphs. The differences in how these algorithms preserve graph prop-
erties affect how these algorithms will preserve distances between nodes in the
embedding space.

Text-based Event Detection 3

Deepwalk learns node embeddings from random walks via a semi-supervised
approach. It uses skipgram, which can essentially "skip" over words. Thus, skip-
gram models are unlike n-grams in that they are not necessarily consecutive.
With little doubt, the skipgram method would enable us to capture the similari-
ties between words that are not in sequence but still of relevance. Node2Vec is a
variation of the DeepWalk approach combining breadth first search (BFS) and
depth first search (DFS). Subgraph2Vec learns node embeddings and subgraph
embeddings (generated through the embeddings of nodes and a small group of
their neighboring nodes) with an unsupervised approach. Author2Vec uses a
graph where a node represents each author and an edge represents each collab-
oration between two authors. The graph does not include text-based content.
We have thus created a paradigm that builds connections between key informa-
tion and text information which previous models such as doc2vec and word2vec
cannot accomplish.

2 Our Approach

In this section we will discuss how we created our graph from a social media
dataset and used the graph to extract node embeddings that will represent our
key entities. We then introduce a transfer learning model to enrich the data.

2.1 Extraction of SnakeGraph

Here will will discuss how we created the SnakeGraph. To show the relationship
between all the words and the key entities from the dataset, we decided to create
a graph.

We define a graph as G=(V,E), where v ∈ V is a node and e ∈ E is an edge.
The node mapping function of G is fv : V → T v and the edge mapping function
of G is fe : E → T e.

The set of node types and the set of edge types are given by T v and T e,
respectively. Each node vi ∈ V belongs to one particular type, i.e., fv(vi) ∈ T v.
The same applies for each edge where for ei,j ∈ E, fe(ei,j) ∈ T e.

To incorporate the content of each tweet, we filtered the tweets through a
preprocessing phase where we remove all stop words (punctuation marks) and
any cluster of characters starting with a “@” or containing “http” or any other
indication of a hyperlink. We then tokenized our preprocessed data and then
added lowercase of these tokens to our graph as a node one by one, essentially
in the form of a snake. Each word and the consecutive word after it is connected
with an edge. Hence, we named the graph SnakeGraph for our proposed model.
Each tweet from our dataset had a tweet id, given by a unique alphanumeric
sequence to distinguish any tweet from all others that might have identical con-
tent. We added each tweet id to the graph as a node for every tweet we included
in our graph. The node for each tweet id was attached to the the node for first
token or word of the corresponding tweet with an edge. Then the rest of the
words were added in a sequence.

No two nodes in our graph are alike. The "snakes" or sequences of words
overlap when the tweets have a mutual word. The words appearing in our graph
are linked only to either the tweet id (if said token is the first in the tweet or
sequence) or to one or two other token(s).

Figure 1 shows the appearance of two different short bodies of text as they
would appear on our comprehensive SnakeGraph graph. The bodies of text in
our figure are "besiktas ve fenerbahçe de vergi indiriminden" and "özel haber -
fenerbahçe de sasirtan advocaat yasaklari”. They translate to “Besiktas (football
team) and fenerbahce (football team) granted tax deductions” and “Special news:
Advocaat (manager) announces surprising prohibitions for fenerbahce.”

4 Hilal Genc and Burcu Yilmaz

2.2 Extracting Graph Embeddings

To determine the embeddings of entities such as date from our SnakeGraph, we
use the Node2Vec model which creates node embeddings from graphs [6]. We
provide the formal definitions of graph and node embeddings below.
Definition 1. Graph Embedding: For a given graph G = (V,E), the graph
embedding extraction converts G into a d-dimensional vector space where d «
|V|. The vector space preserves the graph attributes.
Definition 2. Node embedding: Node embedding provides an embedding
vector (or feature vector) ev(u) as a representation for each node u. These vectors
appear in a low dimensional space and nodes that have similar characteristics
have similar vector representations.

We may use the node2vec algorithm to generate the embeddings e(w), e(tw),
e(us), and e(d) for the words w, tweet ids tw, user ids us, and/or dates d,
respectively.

Each entity (word, tweet id, user id, and/or date) in our dataset is represented
by a node in our graph. The node2vec algorithm enable us to generate the
embeddings for each node appearing on our graph. These embeddings allow us
to find similarities between words and other particular entities appearing on our
SnakeGraph.

Fig. 1. Relationships between a given
date on the graph and an id for a body
of text, the words in it, and the author’s
userid.

Fig. 2. Relationships between the
dates as they appear on our Snake-
Graph.

We developed a biased random walk procedure to explore the neighborhoods
of each node with a technique using both breath first search and depth first
search. We created random walks in a similar way as given by the node2vec
algorithm. For a node u we created random walks with a fixed length l. In a
random walk, let ci be the ith node starting with node c0=u. The following
distribution is used to generate the random walks.

P (ci = x|ci−1 = v) =

{
πvx

Z if(v, x) ∈ E

0 otherwise

where πvx is the unnormalized transition probability between nodes v and x,
and Z is the normalizing constant. Transition probability πvx on an edge

(
v, x
)
is

used to determine the next node x after node v in the walk. πvx = αpq(t, x).wvx
where

αpq(t, x).wtx =

1
p dtx = 0

1 dtx = 1
1
q dtx = 2

Text-based Event Detection 5

and dtx denotes the shortest path distance ∈ {0, 1, 2} between nodes t and x.
Parameters p and q determines the random walk using an interpolation of BFS
and DFS.

We created a number of random walks rwu ∈ RW for each node u in the
SnakeGraph with the methodology mentioned above where the list of random
walks is given by RW .

To extract an embedding ev(u) for each node u, we decided to use the
Node2Vec methodology which is based on the skipgram method that extracts
word embeddings in natural language processing (NLP). We seek to optimize
the objective mentioned as mentioned below. The objective function maximizes
the log-probability of neighbourhood N(s) of a node u.

max
f

∑
n=1

logPr(N(u)|f(u))

2.3 Enriching Graph Embeddings with Transfer Learning

Language models have limited performance when developing models for mor-
phologically rich languages such as Turkish, Finnish, and Czech. As expected,
the Node2Vec model has longer processing time as the graph grows. The time
complexity of the Node2vec model depends on the number of random walks
created.

Nonetheless, we need more data to learn word embeddings. Our text informa-
tion embedded into our SnakeGraph will not be enough to learn text embeddings
accurately enough. Thus, we decided to use a news text corpus C which includes
sentences s ∈ S. Each sentence includes a number of words w. We transfer the
text information in the skipgram model trained on C to the Node2Vec model
trained on the random walks RW extracted from the graph information. This is
known as transfer learning. After training the word2vec model with a text cor-
pus, we used the parameters of the model and use them in the Node2Vec model.
Then we fine-tuned the Node2Vec model with random walks RW extracted from
the graph. In the softmax layer, the model uses the tokens in the last trained
corpus. This means that the model extracts the embeddings from these tokens
that are derived from the random walks. In order to construct sentences for event
detection, we will need more words than the ones in the SnakeGraph. Thus we
extended it to extract embeddings ev(u) of both nodes in the last trained model
and the embeddings ev(w) of words w in the corpus C. We used a concatenation
of the corpus C and random walks RW extracted from the graph. Then we give
this data C ∪RW to the embedding extraction step of the Node2Vec model and
expect the model to learn the relationships between the tokens extracted from
the graph and to learn the semantics of the corpus. Because we trained all of
the nodes and words together, the Node2vec model will extract the relationships
between them using the common words across both datasets. When we get the
node embeddings ev(n ∈ C), accuracy will also be higher for embeddings such
as date embeddings.

To enrich the node embeddings we used a technique to embed the hierarchy
of dates. We initialize the graph with the node “Year” in order to connect all the
nodes representing each year on which the contents of our dataset were published.
Then we add the nodes representing the months for each year, connecting these
month nodes to their corresponding years. In this step, we also connect the nodes
of each consecutive month. We then add the nodes representing each relevant
date by connecting each date to its corresponding month. As we connected the
nodes for each consecutive month we also connect the nodes for each consecutive
date.

We created a node for each date and each date node is connected to a tweet
node. To embed the date hierarchy of dates we added edges between consecutive
dates. That way, date embeddings will also include the relationships between

6 Hilal Genc and Burcu Yilmaz

the dates. We provide a toy example in Figure 2. In this paper we only focused
on date embeddings, although it is possible to similarly enrich user embeddings
and embeddings for other entities. It is also possible for us to add edges between
two people who are mutual followers. This way the embeddings will also take
into account the relationships between users as well.

2.4 Detecting Events Using the Embeddings

In this section we try to determine the events. For each date embedding e(d), we
get the set of k nearest words w in the embedding space. These words are likely
to have close semantic relationships between the events that happened on that
day. Because there is more than one event in a day, we clustered the embeddings
of words ev(w). Thus, each cluster EC which is called the event cluster will
include the words WEC ∈ EC used to mention an event. To define what these
words of events correspond to we used the cosine similarity metric to get the
most related words to the words in the event cluster.

3 Experiments

For our experiments, we initially created a graph SnakeGraph which contains
the words appearing in each body of text, the tweet ids, the user ids, and the
dates. The dataset from which we extracted our graph nodes contained 23,801
tweets published between February 15, 2017 and May 31, 2017. The tweets are
primarily published in Turkish, but there is some English content as many of
the authors are either bilingual or use English words and phrases that are well
known among Turkish speakers. Our dataset contains information about each
tweet such as the date on which it was published, the unique user id of the
author who published it, and the unique corresponding tweet id. We chose these
particular dates because our total dataset had the largest density of tweets within
this time period and because these months are among those during which events
planned in advance, such as football championships, are most likely to take place.
Our comprehensive graph contains all of this information because we wanted a
framework for which we could find connections between different kinds of entities
on our dataset, i.e. dates and topics. Our comprehensive graph Gs has 74,839
nodes and 254,073 edges. Every node on the graph is unique.

We extracted the embeddings from our graphs in two ways. The first method
uses “non-enriched embeddings” and we refer to it as SnakeGraphnonEE . The
second method we refer to as having “enriched embeddings” because it involves
using a text-based news corpus. We refer to it as SnakeGraphEE . For the former
method, we extracted embeddings using only the contents of the graph. We define
the embedding of node u as e(u). This algorithm walks only through the nodes of
our graph using the Node2Vec method. It also includes a hierarchy of dates. The
other method involves the extraction of embeddings using the contents of the
graph including hierarchy of dates along with the text from a large news corpus
entirely in the Turkish language. We essentially “transfer” the information from
a Turkish text corpus onto our dataset containing tweets (most of which were in
Turkish). This algorithm appends the walks from our graph to the contents of
the news text corpus, the input being first the text corpus and then the walks
from our graph. Thus, we extracted the embeddings from the data including
both the graph contents and the text corpus. We define the embedding of node
u for this method as eT (u), indicating that the method involves a transfer of
data.

For our experiments, we use the gensim implementations of skipgram models.
For the method involving non-enriched embeddings, we use a window of 5 and
10 and for the method involving enriched embeddings we use a window of 5 for

Text-based Event Detection 7

a reasonable run time. For both methods, we set the size as 128. Our node2vec
implementation is the one presented in [10].

To evaluate the extracted embeddings, we conducted several experiments.

Table 1. Major event for three selected dates within our dataset.

3.1 Neighborhood Embeddings of Dates

We initialize the comprehensive SnakeGraphnonEE including dates by hierarchi-
cally organizing the relevant date information. The core node connects all other
nodes representing each year. Each node representing a year is then connected
to each month corresponding to that year and each month node is connected
to each date corresponding to that month. The consecutive days, months, and
years are connected to an edge. We construct a graph using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) technique that is used for representing
date embeddings extracted from SnakeGraphnonEE defined above. The t-SNE
is a technique for dimensionality reduction that is particularly used for the vi-
sualization of high-dimensional datasets [17]. The method through which we
extracted the date embeddings on our t-SNE outputs non-enriched embeddings,
has a window of ten, and sets the size to 128. Our t-SNE graph shows the neigh-
borhood of the date embeddings spanning the months of June, July, and August
of 2017. The dataset here contains 88 dates and 35,020 tweets from June 2017
to August 2017. We used a separate dataset than the one described above for
event detection because we wanted our t-SNE graph to span three full months.

Fig. 3. The t-SNE graphic representing the dates appearing on our graph. The dates
of June correspond to the indigo coordinates, the dates of July to the teal coordinates,
and the dates of August to the yellow coordinates.

Figure 3 shows the t-SNE graph of the dates appearing in the dataset between
June 2017 and August 2017 and extracted from SnakeGraphnonEE . Rather than

8 Hilal Genc and Burcu Yilmaz

showing three separate clusters for the three different months, the t-SNE graph
shows clusters where each cluster corresponds to a group of days with similar
characteristics. The overlap between some of the months, most notably between
the months of June and July, most likely results from the repetition of events
such as football matches.

To detect how the similarity between a specific day and its consecutive days
changes we got 16 days and drew the similarity curves for each day. A similarity
curve for a specific day is the cosine similarity of the day and the 33 consecutive
days after it. The results of two days are given by figure 4(a). We then get the
average of the similarity curves for 16 consecutive days. The average similarity
curve is presented in figure 4(b). We observed that events have different trends.
While some of the events can boost and diminish over time by having an os-
cillating behavior. This corresponds to the instant events. Some of the events
can have slight oscillating behavior indefinitely. This may correspond to periodic
events. For similar reasons the similarity curve may have an oscillating behavior.
Football matches occurring repeatedly might cause the days of each of the match
to have similar embeddings. As we see in figure 4(b) the trendline is decreasing
which shows that, on the average, the events fade slightly.

3.2 Event Detection with Human Evaluation

Because we trained both the dates and the words appearing in our dataset on
the same comprehensive graph, we map both the date and word embeddings
onto the same embedding space. Thus, we find the cosine similarity between
the date and word embeddings. For each date, we extract the N most similar
entities (words, user ids, tweet ids, and/or dates) along with their respective
cosine similarity measures, with N being the number of entities to extract. After
getting the most similar entities, we filtered out all the entities that were not
word tokens appearing in our dataset. We extracted the embeddings for each
most similar word by using the graph data and, for the method involving enriched
embeddings, the Turkish news text corpus. Our dataset for event detection used
the dataset of tweets published between February 15, 2017 and May 31, 2017.

In our dataset, we selected 17 days and extracted the most similar words for
each given date. The days that we selected were days on which one of Turkey’s
major football teams was competing as reported by the UEFA. Table 1 shows
results for three different days on which some of the most similar words directly
correlated to an event associated with that day or during that time period. Most
of the events we found occurred on the same day as the day users mentioned or
referenced them. A human evaluator helped to confirm the correlation between
events and the similar words. All events in Table 1 occurred on the same date
except for the referendum, which occurred on April 16, 2017. Nonetheless, the
days associated with the referendum were days on which users mentioned the
upcoming event.

Despite having a small dataset of only 23,801, our model made it possible for
us to perform event detection by identifying crucial nouns or verbs appearing
in our dataset based on the dates on which users mentioned them. These words
were all associated with an event that occurred during or near the time on
which they were mentioned. Although we had to look up each date on twitter in
order to directly understand the correlation between these words and an event,
a familiarity with the meanings and relevant topics of the words can give one an
idea of what kind of event might have occurred that day. It appears that a large
dataset will give us very strong results for detecting relevant events occurring
on a given day.

In information retrieval the two most common evaluation techniques are pre-
cision, the percentage of extracted results which are relevant, and recall, the per-
centage of total relevant results correctly classified by the algorithm. We only

Text-based Event Detection 9

(a) The similarities between a day and its consecu-
tive 33 days for two specific days.

(b) The average similarities of all days and their
consecutive 33 days.

Fig. 4.

calculated the precision because of difficulties meeting the hardware require-
ments of processing all the tweets in our designated period of time. From the
dates within the span of our dataset, we selected the same 17 days as mentioned
earlier and collected the top ten relevant words for each date. We calculated the
percentage of words which correlated to an event either occurring on that day
or a very publicized upcoming event. Our calculated precision measure is given
by the percentage of our top ten words for each of 17 dates correlated to an
event. A human evaluator determined whether or not each of the 170 words was
relevant to any event. We calculated the precisions for the model with enriched
embeddings with a window of 5, the model without enriched embeddings with a
window of 5, and the model without enriched embeddings with a window of 10.
Because we could not train our model with enriched embeddings for a window of
10 within a reasonable amount of time, we did not calculate the corresponding
precision results. We observed that the average precision value is 72.9% for the
model with enriched embeddings and window of 5, 71.2% for the model without
enriched embeddings and window of 5, and 71.2% for the model without enriched
embeddings and window of 10. Table 2 shows our results.

Evaluation Results
Enriched Embeddings Window Size: 5 Window Size: 10

With 72.9% (124/170) -
Without 71.2% (121/170) 71.2% (121/170)

Table 2. Precision measures of top ten tokens for 17 selected dates in our dataset.

With a larger dataset we can more automatically find the events by also
looking for the closest words to our potential events. For example, if a given date
is most closely related to the word “basketball” then that would be a potential
event. The most similar words to “basketball” would give better insight on what
kind of event occurred on that given date or in recent days or what kind of event
is projected to occur.

4 Conclusion

We introduced a new paradigm for extracting key information from a text-based
dataset of social media posts. Our contribution is a novel way of creating a graph
to map the relationships between the entities within our text-based dataset. The
embeddings for these graphs, along with a new way of enriching our embeddings,
have helped us successfully identify correlations between dates and major indi-
cators of events. Our model works on even a small dataset, and we demonstrate

10 Hilal Genc and Burcu Yilmaz

that graphical models are powerful for building correlations between bodies of
text, events, and dates. We hope that our research can pave the way for further
studies in event detection.

Acknowledgment. This project (No. 117E566) is funded by the Scientific and
Technological Research Council of Turkey (TUBITAK).

References

1. Bojanowski, Piotr, et al. Enriching word vectors with subword information. Trans-
actions of the Association for Computational Linguistics 5 (2017): 135-146.

2. Cai, Hongyun, Vincent W. Zheng, and Kevin Chen-Chuan Chang. A comprehensive
survey of graph embedding: Problems, techniques, and applications. IEEE Transac-
tions on Knowledge and Data Engineering 30.9 (2018): 1616-1637.

3. Dhingra, Bhuwan, et al. Tweet2vec: Character-based distributed representations for
social media. The 54th Annual Meeting of the Association for Computational Lin-
guistics. 2016.

4. Feng, Xiaocheng, et al. A language-independent neural network for event detection.
Proceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Vol. 2. 2016.

5. Ganguly, Soumyajit, et al. Author2vec: Learning author representations by combin-
ing content and link information. Proceedings of the 25th International Conference
Companion on World Wide Web. International World Wide Web Conferences Steer-
ing Committee, 2016.

6. Grover, Aditya, and Jure Leskovec. node2vec: Scalable feature learning for networks.
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2016.

7. Hamilton, Will, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. Advances in Neural Information Processing Systems. 2017.

8. Ifrim, Georgiana, Bichen Shi, and Igor Brigadir. Event Detection in Twitter using
Aggressive Filtering and Hierarchical Tweet Clustering. SNOW-DC@ WWW. 2014.

9. Kim, Yoon. Convolutional Neural Networks for Sentence Classification. Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 2014.

10. Kumar, Srijan, et al. Community Interaction and Conflict on the Web. Proceedings
of The Web Conference (WWW). 2018.

11. Liu, Yang, et al. Topical word embeddings. Twenty-Ninth AAAI Conference on
Artificial Intelligence. 2015.

12. Narayanan, Annamalai, et al. subgraph2vec: Learning distributed representations
of rooted sub-graphs from large graphs. arXiv preprint arXiv:1606.08928 (2016).

13. Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of
social representations. Proceedings of the 20th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM, 2014.

14. Qin, Yanxia, et al. Frame-Based Representation for Event Detection on Twitter.
IEICE TRANSACTIONS on Information and Systems 101.4 (2018): 1180-1188.

15. Vosoughi, Soroush, Prashanth Vijayaraghavan, and Deb Roy. Tweet2vec: Learn-
ing tweet embeddings using character-level cnn-lstm encoder-decoder. Proceedings
of the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval. ACM, 2016.

16. Xu, Keyulu, et al. How Powerful are Graph Neural Networks? arXiv preprint
arXiv:1810.00826 (2018).

17. L. van der Maaten, and G. Hinton. Visualizing Data using t-SNE Journal of Ma-
chine Learning Research. 2008.

	Lecture Notes in Computer Science
	Introduction
	Literature Analysis

	Our Approach
	Extraction of SnakeGraph
	Extracting Graph Embeddings
	Enriching Graph Embeddings with Transfer Learning
	Detecting Events Using the Embeddings

	Experiments
	Neighborhood Embeddings of Dates
	Event Detection with Human Evaluation

	Conclusion

