
 
 
 
 
 

Report on Neo4j Libraries 
 
 
 
 

Prepared by 
 

Aslı Umay Öztürk 
 

Middle East Technical University (METU) 
Computer Engineering Department 

 
 
 
 

This report is prepared for Summer Practice held within the project 117E566 
supported by TUBITAK. 

 
 
 
 
 

Ankara, 2019 



3. Used Technologies and Methods

Before diving into the detailed flow of the internship, first I want to talk about
the new technologies and systems I have learned about during my 6-week intern-
ship.

3.1. Graph Databases

Since the group was working with a huge graph data, they have been experi-
menting with graph database services. Never being heard of such thing, first I did
some research on graph databases.

As definition, a graph database is a database that uses graph structures for
semantic queries with nodes, edges, and properties to represent and store data. [4]

Di�erent from a traditional database, in a graph database the data is stored as
graphs instead of tables, which makes storing and querying on a real world graph
data easier. Also, it is easier for our human brains to represent everything as graphs,
instead of tables, which makes the abstraction, representation and planning phase
easier for us.

3.2. Neo4j & Cypher

When we talk about graph databases, Neo4j [8] is an outstanding graph database
platform that shows up when you look for graph databases online. It uses the query
language Cypher [1], which is designed specially for graph databases.

5



3.2.1. Neo4j

Neo4j is one of the leading graph database platforms out there. It’s implemented
with Java and its creators also created a query language, Cypher. It also has several
good libraries for graph algorithms and commonly used methods.

Neo4j also comes with great user interface/visualization tools. Seeing your
graph data is something that you’ll appreciate after working with tables and tables
full of data.

3.2.2. Cypher

Cypher is a query language that can be described as "SQL for a Graph Database".
It is designed for graph type data, which makes querying on a graph database easier
and straightforward. Also, the resulting queries are significantly shorter.

Figure 1: Same query in SQL and Cypher

Pattern matches in Cypher code is basically designed as ASCII Art, which
makes it even easier to learn and master.

6



Figure 2: AsciiArt pattern of a relationship between two nodes

3.2.3. Neo4j Desktop and Neo4j Browser

Neo4j Desktop[7] can be set up to your system and the user interface Neo4j
Browser [6] can be used via your favourite browser by connecting to localhost.
You can run your Cypher queries from Neo4j Browser.

Figure 3: UI of Neo4j Desktop

7



Figure 4: UI of Neo4j Browser

3.2.4. Cypher Shell

Also, Cypher Shell [2] can be used to run queries from terminal, without any
user interface.

Figure 5: Running a query on Cypher Shell

8



3.2.5. Neo4j Libraries

There are many o�cial and uno�cial libraries and language drivers for Neo4j.
I have mainly used the uno�cial language driver Py2neo [10] and o�cial library
for several graph algorithm implementations, Graph Algorithms [3].

3.2.6. Graph Algorithms in Detail

Graph Algorithms is a library for Neo4j that implements centrality, community
detection, path finding, similarity and link prediction algorithms. As in version
3.5, most of the methods are now called uno�cial and only experimental.

Overview of the methods available:

• Centrality Algorithms
PageRank, ArticleRank (experimental after 3.5), Betweenness Centrality,
Closeness Centrality, Harmonic Centrality (experimental after 3.5), Eigen-
vector Centrality (experimental after 3.5), Degree Centrality

• Community Detection Algorithms
Louvain, Label Propagation, Connected Components, Strongly Connected
Components (experimental after 3.5), Triangle Counting/Clustering Coe�-
cient (experimental after 3.5), Balanced Triads (experimental after 3.5)

• Path Finding Algorithms
Minimum Weight Spanning Tree (experimental after 3.5), Shortest Path (ex-
perimental after 3.5), Single Source Shortest Path (experimental after 3.5),
All Pairs Shortest Path (experimental after 3.5), A* (experimental after 3.5),
Yen’s K-shortest paths (experimental after 3.5), Random Walk (experimental
after 3.5)

9



• Similarity Algorithms
Jaccard Similarity (experimental after 3.5), Cosine Similarity (experimental
after 3.5), Pearson Similarity (experimental after 3.5), Euclidean Distance
(experimental after 3.5), Overlap Similarity (experimental after 3.5)

• Link Prediction Algorithms
Adamic Adar (experimental after 3.5), Common Neighbors (experimental
after 3.5), Preferential Attachment (experimental after 3.5), Resource Allo-
cation (experimental after 3.5), Same Community (experimental after 3.5),
Total Neighbors (experimental after 3.5)

4. Flow of the Intership

Systems, methods and services that I have listed on the previous section were
all used by me to evaluate if Neo4j is a service that o�ers improvements on the
group’s research or not. Before the detailed report on Neo4j, let me talk a bit
about the flow of my internship, more in a weekly schedule manner.

4.1. First Assignment: Tryouts and Hands-On Learning

On the first meeting, I was assigned to experiment with Neo4j to have an idea
about the concept of graph databases. I have never heard of the graph database
concept before nor have I ever used one. So I started by setting up Neo4j on my
desktop, creating my workplace and reading lots of documentation and articles.

There were plenty of Neo4j and Cypher tutorials provided by the Neo4j and
Cypher teams themselves, so first I have completed them. Later on, I realized I
should have a dataset to experiment with. With the guidance of the group, I have
obtained a book-author-year-genre graph dataset, and an advice about checking

10



the Graph Algorithms library.

The dataset I obtained was a csv file that can be imported to the Neo4j Desktop
by either built-in import methods or a faster Python script written by one of the
group members that utilizes Py2neo. I modified the script and imported the csv
file, then I started to experiment on the data using Neo4j Browser to run queries
and visualize nodes and relationships.

While looking around for di�erent examples of Graph Algorithms library meth-
ods, I have run into the add-on tool Graph Algorithms Playground, which makes
you choose the configurations for each algorithm and later creates and runs the
Cypher queries for you.

Figure 6: UI of Graph Algorithms Playground

4.2. Realizing Something is Wrong

While using the Graph Algorithms Playground to run queries, I realized that
some methods had some problems, I first thought that the book-related dataset
is not a fit for them, and I tried to modify the data by creating new nodes and
relationships using a C script.

11



With the edited data I again tried to run some queries, managed to make them
work with less problems. Having the confidence of finally being learnt, I asked for
the main dataset that the projects use.

4.3. Obtaining Real Data & Server Access

Diving into the methods with some mock or arbitrary data is a good way to
learn about Neo4j, and that’s what I did first. But to see if Neo4j is something
that can improve the performance, I need to experiment with the real data that
the team uses. Hence, I was asked for the data soon after I was comfortable with
the Neo4j itself.

At this point, since the data is huge, I have also obtained a user in a remote
server in our department to run Neo4j on. After setting up the and fixing issues
related to ssh connection, I was finally ready to run the queries and collect statis-
tics on the nodes, as well as see if the Graph Algorithms methods really work as
expected.

4.4. Experimenting with Real Data

The research team uses a news data for their projects. To get a better under-
standing, I first read the csv files of the node and relationship description where
the data is imported from. Later, since Neo4j makes it really easy, I have used
Neo4j Browser to visualize the data by running some queries to understand the
further relationships.

News data contains some main News nodes where each node is in a CONTAINS

relationship with one or more Word nodes. Each Word has a type like LOCATION,

TIME, DATE... that is shown by IS relationship. Also, each Word can be in a
FOLLOWED_BY relationship between several Word nodes (including themselves).

12



At this point, there were some changes on the Graph Algorithms library since I
have started this internship and I realized that most of the methods in this library
was now are called experimental and uno�cial. Which made my main goal to be
updated as "try to see how many of them actually work as expected." rather than
"collect some statistics about the data."

5. Report of the Graph Algorithms Library

Using a remote machine and the data from the projects the team has been
working on, I have tried all the methods to see if they work as they expected.
Since most of the methods that Graph Algorithms library o�ers are experimental,
it was crucial to find out and pinpoint the issues each method has. Doing so, I can
help the team to understand whether if Neo4j will result in higher performance
and better results or not. Here in this section, I will go into the details of the
queries for some methods to give examples, share some statistics and comment on
the reliability of the methods o�ered.

While calling the methods, there are certain configurations that I can use to
limit the relationships and nodes of the graph. On most of the methods it makes
sense to include everything, but sometimes I’ll be limiting the graph by node label
or relationship type.

5.1. Centrality Algorithms

4 out of 7 of centrality algorithms are called "o�cially supported" in version
3.5, but still, o�cial support or being experimental does not really say a final thing
about the consistency of the methods.

13



5.1.1. PageRank

PageRank is one of the o�cial methods, and it works quite fast. It returns after
around 0.5 seconds when run on all nodes and all relationships. A sample query
for PageRank method is as follows:

CALL algo.pageRank.stream(

null,null,{iterations:50, dampingFactor:0.85})

YIELD nodeId, score

RETURN algo.asNode(nodeId).word AS description, score

ORDER BY score DESC;

Figure 7: Cypher query for PageRank on all nodes

description score
"PERSON" 4262.147945632489
"ORGANIZATION 3134.20248181316
"MONEY" 1786.049925264471
"LOCATION" 1708.0299525968696
"türkiye" 998.5374834925137
"PERCENT" 827.4932531329265
"DATE" 575.7568497967907
"abd" 435.48279780589576
"istanbul" 298.40404949749194
"rusya" 271.4267402492537

Table 1: results of the PageRank query on all nodes

We can interpret this result to obtain the insight that these nodes have the
highest importance in the dataset. It makes sense since most of the news data has
news about Turkey, Russia etc. as well as all the type nodes are easy to reach from
any node.

14



We can modify the query to obtain only some type of relationship instead of all
graph connections. For example, if we were only to check CONTAINS relationship
to see which nodes are mentioned the most in the general dataset, we can do the
following and obtain the following result:

CALL algo.pageRank.stream(

null,’CONTAINS’,{iterations:50, dampingFactor:0.85})

YIELD nodeId, score

RETURN algo.asNode(nodeId).description AS description, score

ORDER BY score DESC;

Figure 8: Cypher query for PageRank on CONTAINS relationship

description score
"türkiye" 204.13141403198242
"abd" 67.77411727905273
"rusya" 42.538142919540405
"avrupa" 41.96432061195373
"istanbul" 36.6232672214508
"ab" 31.691536378860473

Table 2: results of the PageRank query on CONTAINS relationship

5.1.2. ArticleRank (experimental after 3.5)

ArticleRank is an experimental method and it works a bit slow. It returns after
around 9 seconds when run on the whole graph. Another problem with the method
is that it does not work consistently at all. At every run it returns di�erent scores,
causing the ranking to change.

15



5.1.3. Betweenness Centrality

Betweenness centrality is one of the o�cial methods, but it works very slow
even when it’s run on only FOLLOWED_BY type of relationships, which only includes
Word nodes. It returns after a wait of around 7 minutes, but at least it works
consistently.

5.1.4. Closeness Centrality

Closeness centrality is one of the o�cial methods, and it works fine. Since our
data has di�erent sets of connected components, if a word node is in a 3-node
connected component isolated from the rest of the graph, it automatically has
the highest score, which can be a bit misleading. Query returns after around 1.5
seconds when run on only FOLLOWED_BY type of relationships, which only includes
Word nodes.

5.1.5. Harmonic Centrality (experimental after 3.5)

Harmonic centrality is an experimental method, but it seems to be working
consistently. It returns after around 30 seconds when run on only FOLLOWED_BY

type of relationships, which only includes Word nodes.

5.1.6. Eigenvector Centrality (experimental after 3.5)

Eigenvector centrality is an experimental method, it seems to be working fine
but slow. It returns after around 2.5 minutes when run on only FOLLOWED_BY type
of relationships, which only includes Word nodes.

16



5.1.7. Degree Centrality

Degree centrality is also one of the o�cial methods, and it works fast and it’s
consistent. Also, it says a lot about our data and nodes’ connections.

Degree centrality returns the number of connections from a node, being its
degree. A sample Cypher code for this query is like the following:

CALL algo.degree.stream(

null,"FOLLOWED_BY",{direction:"both"})

YIELD nodeId, score

RETURN algo.asNode(nodeId).word AS description, score AS scr

ORDER BY score DESC;

Figure 9: Degree Centrality query

For readibilty, we can add the line WHERE algo.asNode(nodeId).content=<type>

before the RETURN line and check types seperately.

description score
"donald trump" 342.0
"�im�ek" 382.0
"binali yıldırım" 452.0
"vladimir putin" 534.0
"barack obama" 538.0
"yıldırım" 913.0
"recep tayyip erdo�an" 1116.

Table 3: results of the Degree Centrality query on PERSON

17



5.2. Community Detection Algorithms

Community detection algorithms are half o�cial, half experimental. But even
o�cial ones seems to be having problems.

5.2.1. Louvain

Louvain method is an o�cially supported one. But it seems like it still has some
problems. Sometimes it fails to load all nodes, total node count changes at each
run. Hence the communities and community count changes at each run, makes the
method even more inconsistent.

Still at each run there is a significant realization that most of the news data
we have is connected somehow, making the count of communities real low and one
community really huge in node count.

5.2.2. Label Propagation

Label propagation is also an o�cial method, but it has a huge problem. As I
have mentioned before, configurations can be made to include or exclude nodes and
relationships while running a query. But even though the documentation says the
method has a setting as direction="BOTH", it results in a NullPointerException.
So probably, that means it is not working properly.

5.2.3. Connected Components

Connected components is also an o�cial method, and it seems to be working
fine.

18



5.2.4. Strongly Connected Components (experimental after 3.5)

Strongly connected components is not an o�cial method, and it does not sup-
port the direction="BOTH" configuration. Hence, our data seems as if it lacks any
strongly connected component.

5.2.5. Triangle Counting/Clustering Coe�cient (experimental after 3.5)

Triangle counting/clustering coe�cient method is an experimental method but
it seems to be working fine and fast. Query returns in around 2 seconds on whole
data. A sample query and its result can be shown as the following:

CALL algo.triangleCount.stream(null, null, {concurrency:4})

YIELD nodeId, triangles, coefficient

RETURN algo.asNode(nodeId).word AS description,

triangles, coefficient

ORDER BY triangles DESC;

Figure 10: Triangle Count/Clustering Coe�cient query on all nodes

description triangles coe�cient
"türkiye" 243454 8.083024971578234E-4
"abd" 132163 0.0018348326321741234
"avrupa" 88581 0.0034437329239155106
"istanbul" 86429 0.0025988924133895476
"rusya" 86268 0.003245233624243717
"almanya" 67418 0.004932324481369936
"ab" 66808 0.005480803773557353
"çin" 66658 0.0042201935927865825

Table 4: results of the Triangle Count/Clustering Coe�cient query on all nodes

19



5.2.6. Balanced Triads (experimental after 3.5)

Balanced triads method is also an experimental one, and it gives a nasty
ArrayIndexOutOfBoundsException error. I couldn’t resolve the issue, and so does
the Internet.

5.3. Path Finding Algorithms

All path finding algorithms are called to be experimental.

5.3.1. Shortest Path (experimental after 3.5)

Shortest path method is an experimental one, but it works consistently and
fast. A sample query between two nodes and its result can be seen as following:

‘MATCH (start:Word{wid:72}), (end:Word{wid:109})

CALL algo.shortestPath.stream(start, end, null)

YIELD nodeId, cost

RETURN algo.asNode(nodeId).word AS name, cost;

Figure 11: Shortest Path query between two Word nodes

name cost
"türkiye" 0.0
"1 ocak" 1.0
"3 ocak" 2.0

Table 5: result of the Shortest Path query between two Word nodes

20



5.3.2. Single Source Shortest Path (experimental after 3.5)

Single source shortest path method is also an experimental method, and it
has some issues. It acts as it can load the relationships on both directions with
direction="BOTH" configuration, but the results seems otherwise.

5.3.3. All Pairs Shortest Path (experimental after 3.5)

All pairs shortest path is also an experimental method. I cannot make it return
any value even though I have increased heap size.

5.3.4. Yen’s K-shortest Paths (experimental after 3.5)

Yen’s K-shortest paths method is also an experimental one, but it works fast
and consistent. It has two settings, to return the nodes or the paths. Sample query
on the nodes/costs result can be seen here:

MATCH (start:Word{wid:72}), (end:Word{wid:257})

CALL algo.kShortestPaths.stream(start, end, 3, null, {direction:’BOTH’})

YIELD index, nodeIds, costs

RETURN [node in algo.getNodesById(nodeIds) | node] AS description,

costs, reduce(acc = 0.0, cost in costs | acc + cost) AS totalCost;

Figure 12: K-Shortest Paths query between two nodes

description costs totalCost
"türkiye", "LOCATION", "bo�kan" [1.0, 1.0] 2.0
"türkiye", "LOCATION", "bu�ehr", "bo�kan" [1.0, 1.0, 1.0] 3.0
"türkiye", "alp", 32367, "bo�kan" [1.0, 1.0, 1.0] 3.0

Table 6: result of the K-Shortest Paths query between two nodes

21



5.3.5. Random Walk (experimental after 3.5)

Random walk is also an experimental method, but it works fine. It does not re-
peat itself and really seems random, returning paths that really exist. For example,
some random paths of length 6 can be found as follows:

MATCH (start:Word{wid:72})

CALL algo.randomWalk.stream(id(start), 6, 1)

YIELD nodeIds

UNWIND nodeIds AS nodeId

RETURN algo.asNode(nodeId) as node;

Figure 13: query for a Random Walk of length 6 starting from the specified node

first run second run
(:Word word: "türkiye", wid: 72) (:Word word: "türkiye", wid: 72)
(:Word word: "200 milyon dolar", wid: 4673) (:News nid: 112564, label: "news")
(:News nid: 52183, label: "news") (:Word word: "suriye", wid: 93)
(:Word word: "suriye", wid: 93) (:Word word: "zekeriya kars", wid: 56320)
(:News nid: 123910, label: "news") (:News nid: 56319, label: "news")
(:Word word: "el nusra", wid: 6668) (:Word word: "azez", wid: 39147)
(:Word word: "dae�", wid: 489) (:Word word: "rusya", wid: 42)

Table 7: 2 runs of a Random Walk of length 6 starting from the same node

22



5.4. Similarity Algorithms

All similarity algorithms are said to be experimental.

5.4.1. Jaccard Similarity (experimental after 3.5)

Jaccard similarity is an experimental method, but it seems to be working con-
sistently. It takes around 2 minutes for the query to return.

5.4.2. Overlap Similarity (experimental after 3.5)

Overlap similarity method is an experimental one, and like APSP it never
returns in a reasonable time with reasonable space usage, it’s probably because
they use the same methods internally.

5.5. Link Prediction Algorithms

All link prediction algorithms are said to be experimental. But they all seem
to be working fine and fast. They all calculate a score based on the degrees of the
nodes, and since the degree method works fine, they all work fine.

23



References

[1] Cypher Query Language. url: https://neo4j.com/developer/cypher-

query-language/.

[2] Cypher Shell. url: https : / / neo4j . com / docs / operations - manual /

current/tools/cypher-shell/.

[3] Graph Algorithms Library, Neo4j. url: https://neo4j.com/docs/graph-

algorithms/3.5/.

[4] Graph Databases, Wikipedia(via WikiWand). url: https://www.wikiwand.

com/en/Graph_database.

[5] METU Computer Engineering Department. url: https://ceng.metu.edu.

tr/.

[6] Neo4j Browser. url: https://neo4j.com/developer/neo4j-browser/.

[7] Neo4j Desktop. url: https://neo4j.com/developer/neo4j-desktop/.

[8] Neo4j Graph Platform. url: https://neo4j.com/.

[9] Personal Webpage of Pınar Karagöz. url: http://user.ceng.metu.edu.

tr/~karagoz/.

[10] Py2neo, Python Language Driver for Neo4j. url: https://py2neo.org/.

[11] TEGHUB, Textual Event Graph Hub. url: https://teghub.ceng.metu.

edu.tr/.

25


