

Report on Graph Databases

Prepared by

Mert Erdemir

Middle East Technical University (METU)
Computer Engineering Department

This report is prepared for Summer Practice held within the project 117E566
supported by TUBITAK.

Ankara, 2018

TABLE OF CONTENTS

1.GENERAL INFORMATION 3

2. INFORMATION ABOUT THE PROJECT 4
2.1. PRE-PROJECT PHASE 4

2.1.1. What is a Graph? 4
2.1.2. What is a Graph Database? 5
2.1.3. Comparisons Between Graph Databases 6

2.2. UNDERSTANDING GRAPH DATABASE PHASE 10
2.3. COMPARISON OF DATA IMPORTING WAYS 14

2.3.1. Transferring News Data to MySQL Database 15
2.3.2. Transferring News Data From MySQL to Neo4j Database 15

2.3.2.1. Row-by-row Approach 16
2.3.2.2. MySQL to CSV and CSV to Neo4j with LOAD CSV Command
Approach 16
2.3.2.3. MySQL to CSV and CSV to Neo4j with Neo4j Import Tool
Approach 17
2.3.2.4 Results 19

2.4. Improving Graph Model in the Future 19

3. CONCLUSION 22

2

I will continue with project information then go on with future plans for the project and

finish the report with my conclusion part.

2. INFORMATION ABOUT THE PROJECT

Main purpose of the project is analyzing news data (optionally social media

data) by the means of the relationships between the words (such as location, person,

organization, and time) and trying to determine the events that happened or can

possibly be happen in the future according to that news data.

2.1. PRE-PROJECT PHASE

Before we were informed about our main project, Pinar Karagoz, our

supervisor in the METU group of the project, explained the general idea relies

behind the research and why it is being examined. She shared common

knowledge about the mathematical concepts that we can use in further

stages. By this starting point, I started to study on network theory and the

mathematical side of it. After we all finished reading project documents

provided to us, decided to general weekly planning of my internship. To sum

up the phase, I splitted it into different subjects and summarized the

information I found.

2.1.1. What is a Graph?

A graph database is a kind of database that represents a

mathematical graph which is a directed one. As a definition of a graph,

it is simply a collection of elements - typically called Nodes (also called

Vertices or Points) - that are joined together by Edges. Each Node

represents some piece of information in the Graph, whereas each

Edge represents some connection between two Nodes.

4

2.1.2. What is a Graph Database?

Basically, a Graph Database is simply a Database Engine that

models both Nodes and Edges in the relational Graph as first-class

entities. This allows us to represent real world problems as data in a a

closer fit to what we can draw to papers to explain the problems.

In computing, a Graph Database is a database that uses graph

structures for semantic queries with nodes, edges and properties to

represent and store data. A key concept of the system is the graph (or

edge or relationship), which directly relates data items in the store. The

relationships allow data in the store to be linked together directly, and

in many cases retrieved with one operation.

There are two main category for Graph Databases as

design-wise:

● RDF (Resource Description Framework - triple stores -

W3C Standard - SPARQL)

● LPG (Labeled Property Graph - node, relations,

properties - Generally different query languages.)

In graph databases (in common),

● Nodes represent entities such as people, businesses, accounts,

etc.

● Edges, also called as relationships, connects nodes to other

nodes. In other words,

● they represent the relationship between nodes.

● Properties are relevant information to nodes such as name, age,

height for people.

Common databases that can be used for our research purposes

are Neo4j, OrientDB, Apache TinkerPop, Titan and ArangoDB.

5

2.1.3. Comparisons Between Graph Databases

6

Images are taken from: https://event.cwi.nl/grades/2017/12-Apaci.pdf

From the benchmark results, we can clearly say that Neo4j is

better than the other Graph Databases in several ways. It is also an

important point that Neo4j is having frequent sudden drops in

performance. Using Gremlin is common for most of the Graph

Databases. However, it reduces performance and increases execution

time significantly.

7

https://event.cwi.nl/grades/2017/12-Apaci.pdf

Images are taken from:

https://pdfs.semanticscholar.org/73dd/7060a97f8ae5728ac2533926aee492400261.p

df

8

https://pdfs.semanticscholar.org/73dd/7060a97f8ae5728ac2533926aee492400261.pdf
https://pdfs.semanticscholar.org/73dd/7060a97f8ae5728ac2533926aee492400261.pdf

The article states that when user uses small graphs (small

amount of data) the results are comparable and even it can be said

that they are similar for all of the databases. In some cases, like need

for successive local queries (OrientDB) or single insertion operations

(Titan), databases are beginning to differ from each other. In addition to

these differences, Neo4j is the winner by far when user uses big and

complex graphs. Neo4j is more efficient for storing and querying graph

data. Since we are going to use a lot of nodes/edges due to the nature

of the news/event analysis (we need to consider all of the words and

their relations in the given texts), Neo4j seems the best option.

Image is taken from:

https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-p

ostgresql-orientdb-neo4j-arangodb

This article tries to compare some graph databases, document

databases and relational databases performances according to

ArangoDB database itself. Benchmarking is done by ArangoDB creator

himself. I think that it is not a good data for comparison since it is done

with the way that how ArangoDB works, or expected to work with the

9

https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb

best performance. However, I wanted to include this benchmark in my

report to leave the ArangoDB-side open for further discussions.

According to articles that I mentioned, the best choice for our

needs seems to be Neo4j. It has being kept updated, improved. It is the

most known and being used Graph Database in the market. It has

more built-in functionalities for algorithms. It also supports Gremlin (a

common query languages across different Graph Databases) which

still doesn’t have a better performance than the original query

language, Cypher, for Neo4j. On the other hand, besides better

performance for large amount data, licensing or being charged for

more nodes can be another handicap. For this problem, we have to

determine the domains of our project by the means of nodes, edges,

properties, etc.

Also, for supporting more Graph Databases, we can work in two

different paths for starting while still using Neo4j. We can test our news

data with both Gremlin extension and Cypher language, and see which

brings out better performance for our usage.

2.2. UNDERSTANDING GRAPH DATABASE PHASE

After selecting Neo4j as our Graph Database, we decided to test it with

some information we can create and visualize it. We thought that it can help

us to understand how both nodes and relationships relate each other. For this

purpose, we choose our department’s undergraduate course prerequisite tree

whose flowchart representation, created by Sevki Bekir KOCADAG, can be

seen as follows:

10

 11

In order to form exactly the same representation in graph database, I

developed a model that each node represents a course and relationships

represents the prerequisite relation between the courses. Starting point of the

relationship tells that, ‘this course’ is a prerequisite course of ‘that course’

which is at the ending point of the relationship. Also, I labeled each node,

course, according to the department they belong to. For example, since

‘CHEM107’ course belongs to Chemistry Department, it is labeled as

‘Chemistry’.

To access the database with a programming language, I chose Python

due to the lack of complexity in scripting. Also, Neo4j has several library

options. Since we are still in learning process, I chose ‘py2neo’ library for its

easy-to-use feature. At the end of data importing, our model is visualized as

follows:

12

In addition to this graph representation, I tested the graph model by

writing a program that returns prerequisite courses for a specific course or

returns all of the courses in a specific period of a time. In order to give an

example how the script requested related information from the database, I

share a function for getting prerequisite information of a course in the next

picture. Related information is requested by a Cypher language query.

13

Example outputs for both prerequisite information (CENG492) and courses in

a specific time (second year fall semester) can be shown as:

At the end of this phase, as a project group we decided to continue with

project related data. In our case, these are news data.

2.3. COMPARISON OF DATA IMPORTING WAYS

Since the news data is gathered from a known economical news website in

SQL file format, in order to parse and get the information from the file, all data is

transferred to a MySQL database. There are 32734 news entry in the file. After

import to MySQL database is done, the data is pulled from that database, formatted

and transferred to Neo4j database with a Python script. Again, in this script, for the

communication between the script and database, ‘py2neo’ library is used. For the

data share between the script and MySQL database ‘mysqlclient’ library is used.

Further inspections on the scripting progress will be done in subgroups.

14

2.3.1. Transferring News Data to MySQL Database

Since our SQL file has all data as SQL commands, it was easy to

import it to MySQL database by command line file forwarding. After giving file

as input to the database, all tables in the database was created by MySQL

itself. While transferring data, table columns are determined as news entry id,

news entry date, news entry title, news entry’s first paragraph and news entry

content. A new test user is created for safety reasons (with just reading

privileges) due to testing reasons.

After this point, following stages will be handled by the python script.

For the connection, as it is said earlier, ‘mysqlclient’ library has chosen.

2.3.2. Transferring News Data From MySQL to Neo4j Database

As our project requires fast data importing and exporting, it is essential

to try and compare different ways of data transfer to Neo4j. MySQL Database

is not a part of our main purpose. It is only used because our news data has

come with SQL command format in a sql file. Therefore, main comparison

between the ways of importing data to Neo4j is calculated without MySQL

export session. We have found 3 different ways. Our main comparison is how

fast they are.

15

2.3.2.1. Row-by-row Approach

First way of importing data is getting each news entry data one

by one from MySQL database and then importing them to Neo4j one

by one again. This approach uses the functions of the course

prerequisite tree script.

In order to form a suitable graph model for the data we have,

which we are going to use it for all approaches, we determined each

news entry data as nodes. Nodes’ labels are given according to their

publication date. Each news entry is connected to every news entry

that is published on the next day by a ‘FOLLOWED_BY’ type

relationship. This model resulted with 731 labels, 32.734 nodes and

1.668.265 relationships.

With row-by-row creating node and the relationships approach,

import operation is took 3456 seconds (57 minutes 36 seconds) in

total.

2.3.2.2. MySQL to CSV and CSV to Neo4j with LOAD CSV Command

Approach

Second approach for our model mentioned in the first part is

partially the same with the first one. Just like the first one, news entry

data is gathered one by one from MySQL database. However, this time

one row data is written to a CSV file by using ‘csv’ python library. As a

next step, for the relationships and nodes different CSV files are

created. Column fields remained unchanged, but for each node starting

from 1 an identification number assigned rather than the news id.

These newly created identification numbers are used in relationship

CSV file to determine which news has a relationship with other news.

16

News are transferred in 1000 batches (which is default by Neo4j

LOAD CSV command) in order to make transfer faster. Although after

increasing or decreasing batch number, there is no significant change

in import time to Neo4j Database. For all batches, node import

operation took approximately 7 minutes. On the other hand, even if we

waiting for 2 hours for importing relationships, it didn’t finished in

several tries. It took so much time due to the nature of the Cypher

Query, which searches nodes among all of the nodes to create a

relationship. It is getting slower and slower while searching these

nodes when new nodes are created in the database.

As a result, I didn’t want to spend more time in this approach.

Row-by-row Approach already has better performance from this one.

Next, we tried a different option.

2.3.2.3. MySQL to CSV and CSV to Neo4j with Neo4j Import Tool

Approach

Last approach for our model partially includes the second one.

On this approach, I only used MySQL to CSV part of the LOAD CSV

way. For Neo4j side importing, I used a tool which is created by Neo4j

17

in order to import huge amount of data.

CSV files’ headers are changed according to the format required

by the import tool. For example, identification number of nodes’ column

header is changed to ‘:ID’ and label header is changed to ‘:LABEL’.

Moreover, for relationships, starting point of the relationship header is

changed to ‘:START_ID’ and ending point of the relationship header is

changed to ‘:END_ID’. For the type header, it is changed to ‘:TYPE’.

With this syntax, Neo4j Import Tool is capable of generating

nodes and forming relationships between them with arbitrary unique

numbers.

After running the script several times (approximately 50 times),

average time for all import operation was 40,5 seconds. It was at most

50 seconds and at least 26 seconds in total. It took 18-20 seconds to

export CSV files from MySQL files and importing CSV files to Neo4j

18

Database took 4-7 seconds. The remaining time is spent to deleting all

the existing data in the Neo4j Database.

2.3.2.4 Results

In conclusion, the last approach with Neo4j’s own import tools is

the best by far when the comparison and easy-to-use features are

considered. After this moment in the project, it is decided to be used for

import approach if there is no extraordinary need for others.

2.4. Improving Graph Model in the Future

The very first model of our news data is consist of just connecting

nodes which are successive in publishing dates. It requires a lot of

relationships to be created. Therefore, it both slows entire process and

requires more storage space. In order to increase the performance, we come

up with another mathematical concept which is hypergraphs. This model is

also tested with the last approach of importing data.

Since our earlier model has showed us that categorization of nodes

can be done via the dates, we asked ourselves ‘Why don’t we create

hyperedges that represent dates and categorize news nodes with

hyperedges?’. With this question, a new model is created. We are still going

to have our 32.734 news entry as nodes, but with an extra 731 nodes that will

represent hyperedges (since there are 731 different publication dates for

news) in our graph. The relationships based on dates are created between

this hyperedges like they are forming a linked list. Categorization is handled

by created relationships between the news entries (normal nodes) and the

hyperedges (date nodes).

19

At the end of this implementation, node numbers are increased to

33.465 and relationship numbers are decreased to 33.464. It is a significant

decrease in relationship numbers. Therefore, it is also decided that

hypergraph model is more suitable for our future purposes.

Representation of the first model of our graph data

20

Representation of hyperedges of the second model of our graph data

21

